Pathophysiological role of prostaglandin transporter OATP2A1/SLCO2A1 in pulmonary fibrosis

Takeo Nakanishi, Ph. D. Kanazawa University
Local Disposition of Prostaglandin (PG) E₂

Little is known about the role of transporters in inflammatory diseases.

AA; Arachidonic acid
COX; Cyclooxygenase, PLA; Phopholipase, PGDH; 15-ketohydrorxyprostaglandin dehydrogenase, PTGES; PGE Synthase,
PG Metabolisms and Lung Diseases

- **PGE$_2$** is anti-fibrotic and has beneficial actions to down-regulate fibroblast metabolic functions in the lungs. [Cancheri et al, Trends Immunol 25:40, 2006]

- Digital clubbing is noted in idiopathic pulmonary fibrosis (IPF) and lung cancer, which are associated with serum levels of transforming growth factor (TGF-β1). [Schwartz et al, Textbook of respiratory medicine, 1994, Hirakata et al, Eur J Clin Invest 26:820, 1996]

- Loss-of-function mutations in **SLCO2A1** causes primary hypertrophic osteoarthropathy (HPO) and digital clubbing, associated with aberrant PG metabolism. [Seifert et al, Hum Mutat 33: 660, 2012]

IPD; interphalangeal depth, DPD; distal phalangeal depth
OATP2A1 is a PGE₂ Uptake Carrier

- Known as a member of organic anion transporting polypeptide family *(OATP2A1)* encoded by *SLCO2A1*.

- Has been characterized an **influx transporter** for prostanoids (e.g. PGE₂, PGF₂α, and PGD₂) with a relatively **high affinity** for PGE₂ (e.g. Km = 20 ~ 90 nM).
 [Schuster Annu. Rev. Physiol 60:221, 1998]

- Facilitates PGE₂ metabolism by cellular uptake of prostanoids.

- Exchanges a PG with an organic anion such as lactate.
Expression of OATP2A1 in the Lungs

Objectives

- To clarify expression of functional OATP2A1 in the lungs
- To understand its pathophysiological significance in inflammation and pulmonary fibrosis.

These study may provide us with a clue to treat a refractory pulmonary fibrosis.
Contents

- Expression of Functional OATP2A1 in the Lungs (Physiological Condition)
- In Bleomycin (BLM)-induced Fibrosis (on Day 14)
- Under Acute Inflammatory Condition induced by BLM (on Day 5)
Expression of Oapt2a1 in Mouse Lungs (DAB Staining/Light Microscopic Analysis)

EC; Endothelial Cells. AT1/2: Type1/2 Alveolar Epithelial Cells

AT1 or AT2?

PLOS ONE, 10: e0123895, 2015
Expression of Oatp2a1 in Mouse Lungs (DAB Stain/Electron Microscopic Analysis)
Transdifferentiation of AT2 to AT1-like Cells

Rat Lung

On Day6

AT2

AT1-like

Type 2 (AT2) (Day 2)

Type 1 (AT1) (Day 6)

Type 1

Type 2

Pro-SPC; pro-surfactant protein C, a marker for AT2 cells.

[3H]PGE2 Uptake by Rat AT1-like Cells

37°C, pH 7.4
Time: 0.5, 1, 5, 10, 20 min

Mean ± S.E.M. (n = 3) *, p < 0.05 (vs. AEC Type 2)
mRNA Expression of Transporters That Recognize PGE$_2$ in Mouse Lungs

RT-PCR

Mrp4 Oct1 Oct2 Oat1 Oatp2a1 Oatp2b1 Oatp3a1 Oatp1a4 Oatp1a5
Establishment of Slco2a1 Global Knockout

Conditional Slco2a1 KO Construct

- **WT allele**
 - *Not1*
 - E1
 - *Sal1*
 - 4903
 - 15015

- **Flox allele**
 - E1
 - x CAG-Cre

- **KO allele**

Chang HY. et al., Circulation, (2010)

Genotype (PCR)

- 2a1^{-/-}, Cre
- 2a1^{+/+}, Cre
- 2a1^{Flox/-}
- 2a1^{Flox/+}

Phenotype

(Western Blot, Lung)

WT vs 2a1^{-/-}

- Gapdh
 - 37 kDa
 - 25 kDa
PGE$_2$ Uptake by AT1-like Cells Derived from Slco2a1$^{-/-}$ Mice

Oatp2a1 in AT1-like Cells

WT

Slco2a1$^{-/-}$

PGE$_2$ Uptake

[³H]PGE$_2$: 1.5 nM (0.25 μCi/mL)
Time: 1 min
37°C, pH7.4

Mean ± S.E.M. (n=5, 4) *, p < 0.05 (vs. WT)

PLOS ONE, 10: e0123895, 2015
Expression of Microsomal PGE Synthase-1 (PTGES) in Mouse Lungs

Negative Control

Airway

Respiratory Zone

Alveolus

EC

AT2

B. Vessel

Alveolus

PLOS ONE, 10: e0123895, 2015
Expression of Prostaglandin Dehydrogenase (15-Pgdh) in Mouse Lungs

Negative Control

[Diagram showing the expression of Prostaglandin Dehydrogenase (15-Pgdh) in mouse lungs with labels for Alveolus, AT1, AT2, and EC.]

- Alveolus
- AT1
- AT2
- EC
- B. Vessel
- Scale bar: 40 μm
Summary – Role of OATP2A1 in the Lung under Physiological Condition

PGE₂ secreted from epithelium into Alveolus

OATP2A1 is expressed in vascular endothelium and alveolar epithelium.
OATP2A1 contributed to PGE₂ uptake predominantly in AT1-like cells.

Question:
Does OATP2A1 play a role in inflammation and progression of fibrosis in the lung?
Bleomycin (BLM)-induced Lung Fibrosis

BLM was intratracheally (i.t.) injected at 1 mg/kg in PBS to;

- WT or BLM
- or Slco2a1^-/

Body weight loss

Histological inspection (H&E stain)

Collagen disposition (Sirius Red stain)

mRNA Expression in fibrosis-related genes

PGE_2 disposition

Fibrosis was examined on Day 14 and inflammation on Day 5 by assessing

Fibrosis was examined on Day 14 and inflammation on Day 5 by assessing
Alteration in Body Weight of BLM-injected Mice

Slco2a1

- Weight Relative to Day 0 (%)
- Day
- Dose of BLM (1 mg/kg)
 - (Maximum tolerated dose = 2.2 mg/kg for 21 days)
- Loss Relative to Day 0 (%)
- Loss of Body Weight (%)
 (on Day 13)

(Died of fibrosis)

WT 2a1−/−
Alveoli Structure in Mice Injected with BLM (Histological Inspection/H&E Stain)

BLM or PBS (vehicle) was intratracheally injected at 1 mg/kg in PBS; H&E Stain on Day14

WT+PBS

Slco2a1^{-/-}+PBS

Alveolar septum became thicker.
Alveoli were collapsed in more respiratory zone.
Sirius Red Stain for Collagen Deposition in BLM-induced Lung Fibrosis

Mean value of 19 stained images (at least 4 mice/group)

WT Slco2a1−/−

* PLOS ONE, 10: e0123895, 2015
Alteration in mRNA Expression of Fibrosis-related Genes between WT and Slco2a1-/- Mice

Protein Expression of Cox-2 and Pgdh in the Lungs (on Day 14)
Amount of PGE$_2$ in the Lung and BAL Fluid of BLM-injected WT and Slco2a1$^{-/-}$ Mice

Lung Tissue

BAL Fluid

PGE$_2$ (pg/mg tissue)

WT

Slco2a1$^{-/-}$

PGE$_2$ (pg/mouse)

WT

Slco2a1$^{-/-}$

BLM

Fibrosis

*
Analysis of 48-Eicosanoids in BAL Fluid

<table>
<thead>
<tr>
<th>Compounds</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-Dinor-8-iso PGF2α</td>
<td>81</td>
<td>52</td>
<td>34</td>
<td>341</td>
<td>264</td>
</tr>
<tr>
<td>6-Keto-PGF1α</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>20-OH-LTB4</td>
<td>52</td>
<td>N.D.</td>
<td>74</td>
<td>85</td>
<td>242</td>
</tr>
<tr>
<td>15-KET-LTB4</td>
<td>17</td>
<td>23</td>
<td>16</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>PGE₂</td>
<td>11-HETE</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>LTD₄</td>
<td>12-HETE</td>
<td>87</td>
<td>77</td>
<td>107</td>
<td>81</td>
</tr>
</tbody>
</table>

Slco2a1⁻/⁻

N.D. = not detected

PG: Prostaglandin, LT: Leukotriene, DHET: Dihydroxyeicosatrienoic acid, HETE: Hydroxyeicosatetraenoic acid
Summary - Effect of the Absence of Slco2a1 on BLM-induced Fibrosis

- Fibrosis became more severe in Slco2a1−/− mice.
- Fibrosis-related gene expression was increased in the lung of Slco2a1−/− mice.
- Only PGE2 levels were increased in the alveolar lumen.
Hypothesized Mechanism for Aggravation of Pulmonary Fibrosis in Slco2a1−/− Mice

Activated Inflammatory Cell (e.g. Alveolar Mφ)

AT2

IL-1β

IL-1β

IL-1β

IL-1R1

PGE2

PGE2

PGE2

PGE2

PGE2

PGE2

PGE2

PGE2

OATP2A1

15-keto PGE2

15-PGDH

PDGF

EMT

TGF-β1

Question:

Why was more IL-1β released in alveolar inflammatory cells in Slco2a1−/−?
OATP2A1 in PGE$_2$ Secretion from Peritoneal Macrophages (PMφ)

OATP2A1 Expression in PMφ

PGE$_2$ Production (Total)

PGE$_2$ Secretion

WT 2a1$^{-/-}$

Oatp2a1$^{-/-}$

Biochemical Pharmacol, 98:629-638, 2015
Hypothesized Role of OATP2A1 in PGE$_2$ Secretion from Peritoneal Macrophages

- Oatp2a1 was localized in the cytoplasmic domains.
- PGE$_2$ uptake by subcellular fraction including light lysosome (e.g. acidic compartment) was inhibited with OATP2A1 inhibitors.
- PGE$_2$ was released in a Ca$^{2+}$-dependent manner.

Biochemical Pharmacol, 98:629-638, 2015
Conclusion

- Loss of function of OATP2A1 may cause drug-induced pulmonary fibrosis by altering distribution of PGE$_2$ and aggravating inflammation, suggesting OATP2A1 protecting the lungs, suggesting OATP2A1 as a site of drug-induced pulmonary fibrosis

- Loss of function of OATP2A1 may affect pro-inflammatory cytokine release from inflammatory cells (e.g. macrophages); however, we NEED future study.
Acknowledgements

Kanazawa University

• School of Pharmaceutical Sciences
 Ikumi Tamai, Hisakazu Komori
 Reo Mimura, Yuka Uetoko, Yoshitaka Hasegawa, Hiroaki Shimada, Tomoka Gose,
 Yoshinobu Nakamura, Yasuhiro Ohno, Shunsuke Kamo, Shiori Sakiyama, Rika Aotani,
 Shio Maruyama, Junya Shimizu, Hiroki Takashima

• School of Health Sciences
 Keiichi Kawai

• Cancer Center
 Masanobu Oshima, Hiroko Oshima

Keio University

Masatoshi Tomi

Kumamoto University

Tomohiko Wakayama

University of Toyama

Ken-ichi Hosoya,
Sin-ichi Akanuma

Ono Pharmaceutic Co. Ltd.

Akio Nishiura
Kazuyuki Hayashi